Characterization and Validation of Ozone Pollution Episodes Using Aura Measurements and Assimilated Models

Jack Fishman¹, R. Bradley Pierce^{1,} Amy E. Wozniak¹, John K. Creilson¹, J. Al-Saadi¹, Kevin Bowman², Greg Osterman², Anne Thompson³

¹NASA Langley Research Center, Hampton, VA ²Jet Propulsion Laboratory, Pasadena, CA ³Pennsylvania State University, State College, PA

> Aura Validation Workshop Boulder, Colorado September 11, 2006

Two Periods of Investigation

- Late June 2005
 - Use of OMI Tropospheric Ozone to Characterize Episode
 - August 2006

Data Assimilation Using Satellites to Observe Ozone Distribution

Favorable Conditions for Pollution Formation over East Texas During June 21-24, 2005

Regional Ozone Pollution Episode over Southeast Texas during late June 2005

June 22, 2005: Aerial View of Houston Shows Hazy Conditions

Thick haze at 1860 m

City of Houston from 820 m

Out of Haze at 200 m

Variable OMI Pixel Size Complicates Utility of Data

OMI/GFS TOR Over Houston

Good Agreement with Few Available Ozonesonde Measurements

But Does It Tell the Whole Story?

Derived TOR Pattern for the 2 Days Considerably Different

Comparison of June 22 & June 24 TOR Input Parameters

GFS Assimilated O₃ Provides Better Horizontal Resolution than MLS

What Is Responsible for Day-to-Day Changes in Tropospheric Column Ozone?

Month Day Year			TOR	SONDE	TPH	SONDE
6	17	2005	46.8140	43.01(36.5+5.5)	104.290	113.17
6	22	2005	60.9151	58.94(41.8+17.1)	121.810	135.68
6	24	2005	57.6045	58.61(44.1+14.4)	109.560	135.01
6	28	2005	46.1507	51.18(37+14.1)	113.390	96.07

Surface O₃ and TOR Over Houston

Is there an Obvious Relationship?

OMI NO₂ and TOR Over Houston

Can They Be Used Synergistically for Air Quality Studies?

Part II: Assimilation During August 2006

- Compare Model O₃ with Satellite O₃ & In situ O₃
 - Total Ozone
 - (Stratospheric Ozone)
 - Tropospheric Ozone (TOR)

RAQMS Ozone Assimilation/Forecast Procedure HALOE, SAGE II, III **MODIS Rapid Response SAGE III Limb Scattering** Wild fire locations (2004 Reanalysis) **RAQMS Global** Modeled O3+TES TES Obs Operator (2006 Reanalysis) Modeled O3+OMI Adjusted O3 Obs Operator Single Assimilation Cycle First Guess Column 5-day RAQMS Column increment Global **Forecast OMI O3 Column (OMIDAPS)**

Realtime OMI Cloud-cleared column assimilation conducted at 2x2 degrees, analysis increment applied as percentage adjustment to mixing ratio resulting in minimal impact on troposphere.

0.5°x0.5° Binned NRT OMI Column Ozone: August 01-24, 2006

0.5°x0.5° Binned NRT RAQMS Column Ozone: August 01-24, 2006

OMI-RAQMS_{strat} cloud-cleared Tropospheric Ozone Column (TOC) August 01-22, 2006

RAQMS cloud-cleared Tropospheric Ozone Column Analysis August 01-22, 2006

RAQMS/OMI Huntsville Validation

RAQMS shows no systematic bias relative to IONS06 below 215mb (Huntsville_{trop}=115mb).
This suggests that OMI-RAQMS_{strat} TOC is overestimated at Huntsville

RAQMS/OMI Houston Validation

RAQMS shows no systematic bias relative to IONS06 below 212mb (Houston_{trop}=112mb).
This suggests that OMI-RAQMS_{strat} TOC is overestimated at Houston

Summary of Part II

- RAQMS shows no systematic bias relative to IONS06 below 215mb at the middle latitude stations.
- RAQMS is generally higher in the lower stratosphere and lower in the upper troposphere relative to IONS06 ozonesonde data at northern middle latitudes
- OMI-Generated TOR using RAQMS to generate is higher than RAQMS generated TCO
- Future Considerations:

 Comparison between GFS and RAQMS models needs to be understood